|
|- |bgcolor=#e7dcc3|Cells |28 |1 rr 30px 1+6 30px 12 30px |- |bgcolor=#e7dcc3|Faces |80 |32 triangles 48 squares |- |bgcolor=#e7dcc3|Edges |colspan=2|84 |- |bgcolor=#e7dcc3|Vertices |colspan=2|32 |- |bgcolor=#e7dcc3|Dual |colspan=2| |- |bgcolor=#e7dcc3|Symmetry group |colspan=2|(), order 48 |- |bgcolor=#e7dcc3|Properties |colspan=2|convex, regular-faced |} In 4-dimensional geometry, the cubic cupola is a 4-polytope bounded by a rhombicuboctahedron, a parallel cube, connected by 6 square prisms, 12 triangular prisms, 8 triangular pyramids.〔(Convex Segmentochora ) Dr. Richard Klitzing, Symmetry: Culture and Science, Vol. 11, Nos. 1-4, 139-181, 2000 (4.71 cube || rhombicuboctahedron)〕 == Related polytopes== The ''cubic cupola'' can be sliced off from a runcinated tesseract, on a hyperplane parallel to cubic cell. The cupola can be seen in an edge-centered (B3) orthogonal projection of the runcinated tesseract: 抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Cubic cupola」の詳細全文を読む スポンサード リンク
|